Package: anabel (via r-universe)

March 29, 2025

Title Analysis of Binding Events + 1

Version 3.0.2

```
Description A free software for a fast and easy analysis of 1:1
      molecular interaction studies. This package is suitable for a
      high-throughput data analysis. Both the online app and the
      package are completely open source. You provide a table of
      sensogram, tell 'anabel' which method to use, and it takes care
      of all fitting details. The first two releases of 'anabel' were
      created and implemented as in (<doi:10.1177/1177932218821383>,
      <doi:10.1093/database/baz101>).
License GPL-3
Encoding UTF-8
RoxygenNote 7.3.2
VignetteBuilder knitr
LazyData true
Imports cli (>= 3.4), dplyr (>= 1.0), ggplot2 (>= 3.3), kableExtra (>=
      1.3), minpack.lm (>= 1.2), openxlsx (>= 4.2), progress (>=
      1.2), purrr (>= 0.3), qpdf, reshape2 (>= 1.4), rlang (>= 1.0),
      stats (>= 4.0), tidyr (>= 1.2), utils (>= 4.0)
Depends R (>= 4.0)
Suggests htmltools (\geq 0.5), knitr (\geq 1.36), rmarkdown (\geq 2.17),
      testthat (>= 3.0.0), withr
Config/testthat/edition 3
NeedsCompilation no
Author Hoor Al-Hasani [aut] (<a href="https://orcid.org/0000-0002-0431-845X">https://orcid.org/0000-0002-0431-845X</a>),
      Oliver Selinger [aut]
      (<https://orcid.org/0000-0001-9723-2809>), Stefan Kraemer [aut,
      cre] (<https://orcid.org/0000-0002-0071-9344>)
Maintainer Stefan Kraemer < stefan . kraemer . 91@gmail . com>
Date/Publication 2025-03-28 13:00:07 UTC
Config/pak/sysreqs libfontconfig1-dev libfreetype6-dev make libicu-dev
      libjpeg-dev libpng-dev libxml2-dev libssl-dev
```

2 convert_toMolar

Repository https://lordramachandran.r-universe.dev

RemoteUrl https://github.com/cran/anabel

RemoteRef HEAD

RemoteSha e5faeb0fd695cdcd995ff2cf5d78017d0cba00b0

Contents

	convert_toMolar					 	 							2
	MCK_dataset					 	 							3
	MCK_dataset_drift .					 	 							4
	run_anabel					 	 							4
	SCA_dataset					 	 							6
	SCA_dataset_drift					 	 							7
	SCK_dataset					 	 							8
	SCK_dataset_decay .					 	 							8
Index														9
conve	ert toMolar (Convert	a unit	to mo	olar									

Description

convert the value into molar.

Usage

```
convert_toMolar(val, unit)
```

Arguments

val numeric value of the analyte concentration

unit character string indicating the unit from which, the analyte concentration will

be converted into molar.

Details

supported units are: millimolar, micromolar, nanomolar and picomolar. The name of the unit could be written, or its abbreviation such as: nanomolar (nm), micromolar (mim), picomolar (pm), or millimolar (mm). The unite in either form is case insensitive.

Value

The value of analyte concentration in molar

MCK_dataset 3

Examples

```
convert_toMolar(120, "nanomolar")
convert_toMolar(120, "nm")
convert_toMolar(120, "millimolar")
convert_toMolar(120, "mm")
convert_toMolar(120, "micromolar")
convert_toMolar(120, "mim")
convert_toMolar(120, "picomolar")
convert_toMolar(120, "pm")
```

MCK_dataset

Simulated data of binding curve for MCK.

Description

A dataset containing 5 different binding curves of different analyte concentrations. Ka = 1e+7nM, Kd = 1e-2

Usage

```
data(MCK_dataset)
```

Format

A data frame with 403 rows and 6 variables:

Time time points of the binding interaction from start to end

Conc..50.nM. binding curve generated with analyte concentration = 50nM

Conc..16.7.nM. binding curve generated with analyte concentration = 16.7nM

Conc..5.56.nM. binding curve generated with analyte concentration = 5.56nM

Conc..1.85.nM. binding curve generated with analyte concentration = 1.85nM

Conc..6.17e.1.nM. binding curve generated with analyte concentration = 0.617nM

Source

https://apps.cytivalifesciences.com/spr/

run_anabel

MCK_dataset_drift

Simulated data of binding curve for MCK with linear drift.

Description

A dataset containing 5 different binding curves of different analyte concentrations with induced baseline drift = -0.01. Ka = 1e+7nM, Kd = 1e-2

Usage

```
data(MCK_dataset)
```

Format

A data frame with 403 rows and 6 variables:

Time time points of the binding interaction from start to end

Conc..50.nM. binding curve generated with analyte concentration = 50nM

Conc..16.7.nM. binding curve generated with analyte concentration = 16.7nM

Conc..5.56.nM. binding curve generated with analyte concentration = 5.56nM

Conc..1.85.nM. binding curve generated with analyte concentration = 1.85nM

Conc..6.17e.1.nM. binding curve generated with analyte concentration = 0.617nM

Source

https://apps.cytivalifesciences.com/spr/

run_anabel

Analysis for 1:1 Biomolecular Interactions

Description

Analysis for 1:1 biomolecular interactions, using one of single-curve analysis (SCA), single-cycle kinetics (SCK) or multi-cycle kinetics (MCK)

Usage

```
run_anabel(
  input = NA,
  samples_names_file = NULL,
  tstart = NA,
  tend = NA,
  tass = NA,
  tdiss = NA,
```

run_anabel 5

```
conc = NA,
drift = FALSE,
decay = FALSE,
quiet = TRUE,
method = "SCA",
outdir = NA,
generate_output = "none",
generate_Report = FALSE,
generate_Plots = FALSE,
generate_Tables = FALSE,
save_tables_as = "xlsx",
debug_mode = FALSE
)
```

Arguments

input Data.frame, an excel, or a csv file (full path) - required

samples_names_file

An optional data.frame, an excel, or a csv file (full path) containing the samples names. If provided, it must have two columns, Name and ID. ID: names of

columns in the input file; Name: sample's names.

tstart Numeric value of time's starting point (default: minimum time point in the in-

put)

tend Numeric value of time's ending point (default: maximum time point in the input)

tass Numeric value of association time - required tdiss Numeric value of dissociation time - required

conc Numeric value, the used concentration of the analyte; should be in molar (see

convert_toMolar) - required

drift Boolean value, to apply drift correction (default: FALSE)

decay Boolean value, to apply surface decay correction (default: FALSE)

quiet Boolean value, to suppress notifications, messages and warnings (default: TRUE) method a character string indicating which fitting method to be used. One of "SCA",

"SCK", or "MCK", case insensitive (default: SCA).

outdir Path and name of the output directory in which the results will be saved (default:

NA)

generate_output

a character string indicating what kind of output will be generated. One of "none", "all", or "customized", case insensitive (default: none). If "all" or "customized" were given, outdir is required. If "customized" was given, at least one of generate_Plots, generate_Tables, or/and generate_Report must be

set to TRUE

generate_Report

Boolean value, should anabel generate a summary report of the experiment?

(default: FALSE)

generate_Plots Boolean value, should anabel generate plots? (default: FALSE). generate_output

must be set to "customized"

6 SCA_dataset

estimated response (default: FALSE)

Value

default returned value is a list of two data frames, the kinetics table and the fit value of each time point (fit_raw). If dev_mode was set to TRUE a third data frame will be returned containing the initial value of the parameters and the fitting function.

References

Determination of rate and equilibrium binding constants for macromolecular interactions by surface plasmon resonance. D J O'Shannessy, M Brigham-Burke, K K Soneson, P Hensley, I Brooks Analytical biochemistry 212, 457-468 (1993)

Analyzing a kinetic titration series using affinity biosensors. Robert Karlsson, Phinikoula S Katsamba, Helena Nordin, Ewa Pol, David G Myszka Analytical Biochemistry *349*, 136–147 (2006)

Anabel: an online tool for the real-time kinetic analysis of binding events. Stefan D Krämer, Johannes Wöhrle, Christin Rath, Günter Roth Bioinformatics and Biology Insights 13, 1-10 (2019)

See Also

```
convert_toMolar
```

Examples

```
# To analyse data using MCK method:
run_anabel(
  input = MCK_dataset, tstart = 1, tass = 21, tdiss = 140,
  conc = c(3.9E-9, 1.6E-8, 6.2E-8, 2.5E-7, 1.0e-6), method = "MCK"
)
```

SCA_dataset

Simulated data for SCA method.

Description

A simulated data containing interaction information of three binding curves all generated with concentration 5e-08,

Usage

```
data(SCA_dataset)
```

SCA_dataset_drift 7

Format

A data frame with 453 rows and four variables:

Time time points of the binding interaction from start till the experiment's end

```
Sample.A sample one with Ka = 1e+7nM, Kd = 1e-2
```

Sample.B sample two with Ka = 1e+6nM, Kd = 5e-2

Sample.C sample four with Ka = 1e+6nM, Kd = 1e-3

Source

```
https://apps.cytivalifesciences.com/spr/
```

SCA_dataset_drift

Simulated data for SCA method with linear drift.

Description

A simulated data containing interaction information of three binding curves all generated with concentration 5e-08, baseline drift = -0.019

Usage

```
data(SCA_dataset)
```

Format

A data frame with 453 rows and four variables:

Time time points of the binding interaction from start till the experiment's end

Sample.A sample one with Ka = 1e+7nM, Kd = 1e-2

Sample.B sample two with Ka = 1e+6nM, Kd = 5e-2

Sample.C sample four with Ka = 1e+6nM, Kd = 1e-3

Source

```
https://apps.cytivalifesciences.com/spr/
```

SCK_dataset_decay

SCK_dataset

Simulated data of different binding curves for SCK method.

Description

8

A dataset contains one binding curve with 5 titrations-series (5 injection-series), as follows: tass: 50, 220, 390, 560, 730; tdiss: 150, 320, 490, 660, 830; conc: 6.17e-10 1.85e-09 5.56e-09 1.67e-08 5.00e-08 M

Usage

```
data(SCK_dataset)
```

Format

A data frame with 1091 rows and 6 variables:

Time time points of the binding interaction from start to end

Sample.A sample containing 5 titerations with Ka = 1e+6nM, Kd = 1e-2

Source

https://apps.cytivalifesciences.com/spr/

SCK_dataset_decay

Simulated data of different binding curves for SCK method with exponential decay.

Description

A dataset contains one binding curve with 5 titrations-series (5 injection-series), as follows: tass: 50, 220, 390, 560, 730; tdiss: 150, 320, 490, 660, 830; conc: 6.17e-10 1.85e-09 5.56e-09 1.67e-08 5.00e-08 M

Usage

```
data(SCK_dataset)
```

Format

A data frame with 1091 rows and 6 variables:

Time time points of the binding interaction from start to end

Sample.A sample containing 5 titerations with Ka = 1e+6nM, Kd = 1e-2

Source

```
https://apps.cytivalifesciences.com/spr/
```

Index

```
* datasets

MCK_dataset, 3

MCK_dataset_drift, 4

SCA_dataset, 6

SCA_dataset_drift, 7

SCK_dataset, 8

SCK_dataset_decay, 8

convert_toMolar, 2, 5, 6

MCK_dataset, 3

MCK_dataset_drift, 4

run_anabel, 4

SCA_dataset, 6

SCA_dataset, 6

SCA_dataset, 8

SCK_dataset, 8

SCK_dataset, 8

SCK_dataset_decay, 8
```